Pliss na jutro daje NAJ

l)
[tex] - \frac{1}{2} - \frac{1}{3} ( \frac{1}{4} \div \frac{1}{2} ) = \\ = - \frac{1}{2} - \frac{1}{3} ( \frac{1}{4} \times \frac{2}{1} ) = \\ = - \frac{1}{2} - \frac{1}{3} \times \frac{1}{2} = \\ = - \frac{1}{2} - \frac{1}{6} = \\ = - \frac{3}{6} - \frac{1}{6} = \\ = - \frac{4}{6} = - \frac{2}{3} [/tex]
ł)
[tex](2 \frac{1}{3} + 2 \frac{1}{2} ) \div \frac{1}{2} = \\ = (2 \frac{2}{6} + 2 \frac{3}{6} ) \times \frac{2}{1} = \\ = 4 \frac{5}{6} \times 2 = \\ = 8 \frac{10}{6} = 9 \frac{4}{6} = 9 \frac{2}{3} [/tex]
m)
[tex](1 \frac{1}{2} - \frac{1}{5} ) \times ( - \frac{1}{3} ) = \\ = (1 \frac{5}{10} - \frac{2}{10} ) \times ( - \frac{1}{3} ) = \\ = 1 \frac{3}{10} \times ( - \frac{1}{3} ) = \\ = \frac{13}{10} \times ( - \frac{1}{3} ) = \\ = - \frac{13}{30} [/tex]
n)
[tex](1 \frac{1}{3} ) \div ( - \frac{1}{2} ) - ( \frac{1}{3} ) \times ( - 3) = \\ = (1 \frac{1}{3} ) \times ( - 2) - ( \frac{1}{3}) \times ( - 3) = \\ = - 2 \frac{2}{3} - ( - 1) = \\ = - 2 \frac{2}{3} + 1 = \\ = - 1 \frac{2}{3} [/tex]
o)
[tex]1 \frac{1}{2} \times ( - 1 \frac{1}{2} ) - 3 \frac{1}{2} + 4 \frac{1}{3} \times 2 = \\ = \frac{3}{2} \times ( - \frac{3}{2} ) - \frac{7}{2} + \frac{13}{3} \times 2 = \\ = - \frac{9}{4} - \frac{7}{2} + \frac{26}{3} = \\ = - \frac{27}{12} - \frac{42}{12} + \frac{104}{12} = \\ = \frac{35}{12} = 2 \frac{11}{12} [/tex]