Pomoże ktoś to rozwiązać ? ☺️

Odpowiedź:
[tex](\sqrt{8})^{\frac{2}{3}+log_{4}81}=(\sqrt{8})^{\frac{2}{3}}*(\sqrt{8})^{log_{4}81}=\sqrt{8^{\frac{2}{3}}}*(\sqrt{2^3})^{log_{2^2}81}=\sqrt{(2^3)^{\frac{2}{3}}}*(2^{\frac{3}{2}})^{log_{2^2}81}=\\\\=\sqrt{2^2}*2^{\frac{3}{2}*log_{2^2}81}=2*2^{\frac{3}{2}*\frac{1}{2}*log_{2}81}=2*2^{\frac{3}{4}*log_{2}81}=2*2^{log_{2}(81^{\frac{3}{4}})}=2*81^{\frac{3}{4}}=\\\\=2*(3^4)^{\frac{3}{4}}=2*3^3=2*27=54[/tex]